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in the stress e,*, The applied theory introduces a discrepancy of the same order as the 
quantity being considered in calculating the stress rsrL in the slab bending case. 
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A method is presented for asymptotic integration of equations in the theory of shells 
(convex shells are examined) for the case where the free terms in the equations consist 

of a Dirac delta function or its derivatives. These solutions, which are solutions repre- 
sented by a function of the Green type, correspond to the action of concentrated forces 

or moments on the shell. 
At first the analysis is carried out for one equation and then it is shown how the obtain- 

ed results are extended to the system. 

1. Let us examine the linear differential equation containing the small parameter e: 
which appears in the theory of shells as the relative thickness 

es AI (u;) .+ L (cc) = b (1-i) 

Here RI and t are elliptic differential operators with variable coefficients and highest 
derivatives of orders 2m and 21, m > 1 , respectively. Without any loss we can write 
s = 2 (m - 1). 

In the theory of shells the order of operators,&f and L are equal to 2m = 8 and 2t =4; 
however, all arguments will be carried out for arbitrary m and I. Since the dimension 

of the space n does not have any significance with respect to the presented arguments, 
we shall carry them out for any arbitrary even n {the case of uneven n is examined in 

an analogous manner). 
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For this equation we shall construct a solution making use of the method of asymptotic 

integration [l-3]. Such solutions are called fundamental, and the basic content of this 
work consists in the adaptation of the rigorous process of the asymptotic method to the 
construction of these solutions. 

The method of asymptotic integration consists of the following: the solution is repre- 

sented in the form of a sum of two solutions of the so-called slowly varying fundamental 
type and solutions of the edge effect type [l] (in papers [2 and 31 the latter are referred 

to as boundary layer). Both types of solutions are expanded in a series with respect to the 
small parameter, and a recursion system of equations is constructed for terms of the series. 
The process of construction of approximations of the fundamental solution is called the 

first iteration process, the analogous process for rapidly changing solutions is called the 

second iteration process. 
Let us construct these processes for determination of solution of Eq.(l. 1). Solutions of 

the second process just as solutions of the edge effect type must have a local character 

and must decrease rapidly with distance from the singular point. Such solutions will be 
referred to as local solutions. 

Below, some properties of generalized homogeneous and adjoined homogeneous func- 

tions will be needed. We shall designate them by one letter Pi (the subscript i being 
equal to the degree of the function). The necessary information about these functions is 

presented in monograph [4]. 

A homogeneous function of the ith degree will be regular if all its derivatives of the 

order greater than i are equal to zero. Otherwise it will have a singularity at zero.Such 
a function will be called a singularity of the ith degree. All functions of the degree 

i < 0 will be singularities. 
If some function has a singular point and in the vicinity of this point it is expanded in 

a series with respect to homogeneous (adjoined) functions, then the singularity of the 
lowest degree will be called the principal one. 

The structure of the fundamental solution of the differential equation of the elliptic 
type is described in papers [5 and 61. It is shown that the solution can be represented in 
the form of a sum of a singular and regular part, where the singular part is expanded in 

a series with respect to singularities the principal of which has the degree 2m - n (?m 

is the degree of the equation). 

2. As a preliminary, let us examine the equation with constant coefficients which is 
obtained by retaining in Eq.(l. 1) in operators .\I and L only terms with higher deriva- 
tives by equating coefficients to their values at the point t = 0, i.e. the singular point 

of the right side of the equation a* ,+f,, o (W) + b, Q (@, = b 
I P-1) 

The solution of the equation with constant coefficients is simply determined with the 

aid of plane waves [4] t =0151 + . . . +o*r* 

where o t are the components of the unit vector of the normal to the plane E = const. 
The Dirac function b (I) is represented in the following manner [4] : 

6 (4 = c 
s 

I <I-” do, c = (-1p (21)‘” (n - l)! 

Y 
Here o is the unit sphere, do is its element. This representation permits to find the 

solution of Ee(2.1) in the form 
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and to reduce the problem to the solution of the following ordinary differential equation: 

e* n&@(*“) + &a@) = c 1 z r” 

Here MO and & are constants which depend on parameters o i and are determined by 
operators M,., and &,,o in the transformation to the variable &. The solution of this 
equation consists of the sum solutions @C and @, of the following equations : 

L&Dots’) = c I I rn. &q”-2’) _j_ G-8 MO-‘&q = - c (I c I-” p-4’) (2.3) 

If in the right side 2m - 41 < 0, the differentiation is replaced by integration. In this 
manner the initial equation separates into two. The first one does not contain the small 

parameter and corresponds to the degenerate equation e = 0, the second equation con- 

tains the small parameter. The solution of Eq.Q.3) can be constructed with the aid of 
the fundamental solution of the $th equation and the latter is easily determined [4]. A 
fundamental solution of Eq.(2.3), decreasing for 1 & 1 - 00 such as is needed for the con- 

struction of the local solution, exists and is unique only when half of the roots 1 in the 
characteristic equation &,l*(‘*‘) + e-“Mo-r&,z = 0 has a positive real part and half neg- 
ative. This condition is analogous to the condition of solutions of the edge effect type 

[I-3]. For equations of shells it is always satisfied. The solution for Y was constructed 
in paper [7]. The solution of equation @r is determined by convolution 

or = - cY*(l E l-“)(sm+‘)- 

The solution of Eq.@. 1) will be 
=.~+&S %oio+ s @,rlo 

IA 0 
The function IL+ for r = (r,* + . . . f I,,?)“~ -+ x can be presented in the form 

u.* = e’P, + 0 (eTsPx_,), x=2m--441-n (2.4) 
It grows if x > 0 and decreases if x < 0, but it has the coefficient 19 and in some 

region r > rU (the quantity ro is discussed below) it is small in magnitude. Consequently, 
with some accuracy it can be neglected with respect to ID’. 

It is readily seen that the found solutions U’ and U* satisfy the equations 

L,r,, (u.‘) = 6. e*M,,, oL21, a-’ (~9 -i- ~9 =- se&, e-*bftm, 0 (6) 

The operator L-k is the inverse if Lt. It was shown with this example how it is formally 

possible to approach the splitting of the initial equation into two, and to separate the 
equation which determines the local solution. The solution of the second apparently com- 
plex equation can be constructed by the method of plane waves. In fact, the fundamental 
equation obtained by this method can be written in the following manner : 

With the aid of this function the local solution tLf is written differently 

lr = - e’C*f&, o-2nf2m, o (6) (2.6) 

In this manner the fundamental solution of Eq. (2.1) can be constructed in steps : at 
first itisdetermined for the degenerate equation, assuming e = 0. The principal singular- 

ity of this solution will be of the type Pz, _,,, while the singularity of the initial equation 
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must be P2,,,+ This discrepancy is removed by adding the solution UP, which according 
to (2.2) and (2.3) has the same principal singularity as the solution w’, but with the op- 

posite sign. In fact, this can be seen if in the vicinity of the singular point the solution 
of Eq.(2.3) is obtained in the form of a power series in 6 and then integration is carried 
out over the sphere O. The solution w = 10’ + Co, will be the desired one with the requi- 

red principal singularity. 
The solution of Eq.(2.1) with constant coefficients can be represented in a different 

form which is more convenient for generalization to the case of variable coefficients 

W=..+@=i; e”u$+wP (2.1) 
i?) 

if the functions We’ which satisfy the following recurrent system of equations: 

~s~,s(eb’)=6. 4r,o(~il;)=-‘~f,,,,(~i). i=O,i. . . ..k--i 

On the right side are the derivatives of generalized functions determined in 141. From 
the condition that w be a solution of Eq.(2.1) the following equation is obtained for the 

function rq* : e'.lf2,,,(tu,+)+ L, o (vi*) = - eB+l)S.lf,,,,(lo~'I . 
Dividing the right and the left sides of this equation by the operator L,r,s according 

to the method described above, we arrive at the equation 

e$.V,, ,,I ,.,, “Jr (w,+) + wr* = - e(k+‘)S.tfsm, oL,l,OB’ (wok’) (2.3) _. -, 

The local solution of this equation according to (2.6) has the form 

WI l = - e(ki’%*A1,, a$, 0-1 (10~‘) , * 

The right side of Eq. (2.8) is a homogeneous function of degree y = 22 --n -2k( m -lj. 
The behavior of the function 101, for r -+ W, as follows from the equation, is determined 
by this function, i. e. U.1* = ewlPp .( + t +*j ‘0 ( Py_J 

If for k = 0 the function wl* increases when r -+ ~0, then for k > (22 - n) /r the func- 
tion WI* will be decreasing and in this case the parameter kr enters into it with the power 

kr. Consequently, with increasing number of steps the local solution has more and more 
local character, i. e. it decays more intensively with distance from the singular point, 
It can be easily seen that the principal singularity of solution w will be the required one 
because, although the principal singularities of approximations u.,’ increase with increas- 

ing number, the structure of solution Q* is such that “superfluous” singularities of func- 

tion w’ enter into w* with the same coefficients but with opposite sign and are mutually 
eliminated in summation. This statement is verified by direct construction of functions 
w’and I+. 

In this manner the fundamental solution of Eq.(2.1) is represented in the form of a 
sum of functions w’ and IZ* which in analogy with [l-3] will be referred to as slowly 

varying and rapidly varying, respectively, 

3, Now let us turn to the fundamental problem of determination of solution of Eq. 

(I. I). 
The first process is formally constructed exactly in the same manner as in papers [I-- 

-31 rd=~~‘~e”ro,‘+.~.+ckarr~‘~ & (3.1) 

L (Iog’) = 6, L (wi+l’) = - M (wi’), i = 0, i ,..., k - 1 
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The series converges asymptotically everywhere with the exception of some region in 
the vicinity of the singular point in which it diverges because the order of the principal 
singularity of each subsequent approximation decreases. 

By means of thesecond process we shall eliminate these discrepancies in the singular- 
ities of approximations of the first process and the divergence of the series in the vicinity 
of the singular point. Equations of the second process determine the rapidly varying part 

of the solution, the derivative of which is considerably greater than the function itself, 

i. e. &@ / ~924 w e-l ti. This relationship determines the form of equations of the second 
process. 

In the vicinity of the singular point the variability of singularities may be great. In 

fact, on differentiation of such functions the degree of homogeneity decreases by one 
dPi / dZj - r- IPi. For r 4 a the inequality 8w* / ati >> e-w is satisfied. i. e. instead of 
the first relationship used for the construction of the second process, a more stringent 
condition is satisfied. It is possible, however, to show that equations constructed for deter- 
mination of solutions which satisfy the first condition include solutions which satisfy the 

more stringent second condition. Therefore, let us construct the second process formally 

in the same manner as it was done in papers [l- 31, i. e. let us expand the coefficients 
of Eq.(l. lj in the vicinity of the singular point in a Taylor series 

iv (Ic) = e’ 5 5 Afij (W) + 5 i h (W) = & (3.2) 
i=0 j==0 Lo j-0 

Here the first index i indicates the order of the derivative in the operator, the second 
index i gives the degree of homogeneity of coefficients in this operator, Let us take k 

approximations of the first process and let us separate out the singular part IVof this solu- 
tion representing it in the form of a series with respect to singularities and let us write 

first terms of the series 11’ = pPl + ebpyAI +. . .+ e(k-l)*p,,,c_l;+. . . 

In the vicinity of the singular point the solution KP in summation with IV must annihi- 

late the singularities which are written out. Let us represent the solution w in the form 
of the series 

V&i wc1* + R (3.3) 
i=a 

considering that each subsequent approximation is e-1 times greater than the previous one. 
The sum of functions IC+ and W’ must satisfy Eq. (3.2) near the singular point. Substi- 

tuting this sum into (3.2) we obtain N (d) = _ N (w) + 6 

We substitute (3.3) into (3.2) and equate terms of equal order with respect to magni- 
tude. If in the process of equating it is taken into account, that in the vicinity of the 
singular point the inequality Pi > Pi+1 holds (singularities of different degrees with 
respect to magnitude cannot be compared with each other and cannot appear in the same 
equation), we obtain the following recursion system of the second process for determina- 
tion of approximations ~4% 

e‘df zm, O 00) + Lg. O (wo*) = - e 
G-1) #AI 

tm. 0 (P,) 

C’Sf tm, o (~‘1 f &. (, Oh*) = - e‘-+f2,, t PO*) - L,,, 1 W) - e’Jfltncl. @b*) - 

- &,_l, o @a*) - e”*l)’ t.vz,, , P,) -I- M,,l, o (P,) + M,,, o (p& . . . (3.4) 

On the left in all equations is the familiar (see 2) differential operator with constant 
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coefficients, on the right is the function which is known at each stage. 

Elimination from functions of operator &,o, which gives the slowly varying parts of 
solutions, is accomplished by method 2. The local solution of equations is determined 

for example by rhe convolution of fundamental solution (2.5) with the right sides. There 
are no principal difficulties in the solution. 

Let us write the system of equations obtained for the first and second processes 

L(W~~==S, L(UQ+s’)=-M(U),‘), i==o, 1,2,..., k--1 

~Ltt.,-'M,,*(Wj*)+Wj'=Pj, i=i.S,..., p (3.51 

Here Pi are the first parts of system (3.4) multIplied by operator Z&s--‘. The solution 

of Eq.(l. 1) will be 

Y)= ; &+R a*%‘~~ _t (3.9 

i=e k-0 

It is now easy to see that “superfuous” singularities in solution .w’ are annihilated by 
solution cc+. This occurs in such a manner that the first approximation IQ* eliminates the 
principal singularity at once in all approximations u’i’, the next approximation ull* elimi- 

nates the next singularity also in all approximations (this is verified by direct construc- 
tion of principal singularities in solutions 10’ and.u+, for example by the method of plane 

waves). The number of iterations of the second approximation necessary for annihilation 

of “superfluous” singularities in the approximations of the first process is equal to 

2 fk + i) (m - I) + 1. 
Asymptotic convergence of solution (3.6) with the exact solution is proven in a man- 

ner analogous to the procedure for the edge effect (31. It is only necessary to clarify in 
what region near the singular point is it necessary to adopt the solution in the. form(3.6). 
Outside this region it is necessary to neglect solutions of the second process. 

It is evident from Eqs.(3.5) that with increasing distance from the singular point the 
behavior of local solutions undergoes a series of changes: the solutions transform from 

very rapidly varying and the &L? I ~?r+ > a-‘~* condition satisfying ones to rapidly vary- 
ing ones (which are subject to the condition L+uP / ~92, - e-Iw*) , and finally they change 
to slowly varying solutions for f - 00 . Here the parameter E enters to the (k + I$ 8 
power, i.e. for r -V 00 the approximations of the second process have a greater order of 

smallness than the kth approximation of the first process, In these discussions the con- 
cept of r + OS must be understood conditionally and it must be assumed that r > ro. 
The magnitude of radius r. can be given starting with the requirement that the function 

on this boundary of the singularity be already sufficiently slowly varying. 
For example, if e = I .10-4, it is possible to take ro = $00 e . Then in the vicinity of 

this boundary aPi 1 axj - io2Pi > Pi, consequently, inside the sphere of radius ra the 
singularities can be considered rapidly varying and therefore equations of the second 

process are true, and the solution represented by series (3.6) is applicable. On the bound- 
ary of the sphere the relationship e aPi I tIzj - iOefP~ 4 Pi is satisfied, i. e. functions 
Pi are slowly varying and therefore outside the sphere the first process is convergent, and 
the solutions of the second process becomes unnecessary. 

In this manner the radius ri is determined by the magnitude of the small parameter 
ro = It . Here in the selection of coefficients 6 the following inequalities must be 
satisfied : r P 1, @9-l 3- f 

It is possible to rind the number of iterations of the first and second processes inside 
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the sphere of radius ro which are necessary so that the solution (3.6) will approximate 
the exact solution with a preassigned asymptotic accuracy. The same thing can be done 
for the iteration of the first process outside the indicated sphere. We shall not deal with 
this here. 

4. By the asymptotic method, the construction of the solution of a system of differen- 
tial equations of the elliptic type (the degenerate system is of the same type) when the 

right side contains d,-functions or its derivatives, in principle does not differ from the 
case of one equation examined above. 

In fact, in this paper in the search for the fundamental solution of one equation the 
first and second iterative processes were constructed such that in their form they were 
identical with iterations in the solution of boundary value problems [l-3]. In paper [l] 

the iterative processes were constructed for a system of equations in the theory of shells 
applicable to boundary value problems. From the development of arguments presented 

above for one equation it is possible to conclude that the process of construction of fun- 
damental solutions of a system with the aid of the first and second processes is identical 

to the process developed in [l]. For this reason there is no need to repeat cumbersome 
derivations which will only repeat what was done before. 

The first process is repeated rigorously [l]. Equations of the second process are con- 
structed in the same manner as for one equation: the coefficients are expanded in a 
Taylor series, the solution is presented in the form of a series analogous to (3.6) and then 
together with the singular part of the solution of the first process it is substituted into the 
system. By equating values of the same order of smallness the system is transformed into 
a recursion system of systems of equations for determination of approximations of the 

second process, where at each stage one and the same system of equations with constant 
coefficients is solved. Here, of course, there are more difficulties than in the case of one 
equation ; however they are purely technical. 

We note that the approximations of the second process are determined independently 
of boundary conditions and for any equation or system they can be determined once and 

utilized for solution of various problems. It is only necessary that the singular point be 
located at a distance ro form the boundary. 
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Numerous problems of the theory of shells involve the solution of nonlinear boundary 
value problems [l and 21 and this is often a fairly difficult task. Below we show, that in 
the number of cases numerical solutions of such problems are feasible. 

Let us have the following system of differential equations with given boundary condi- 

tions : dY, (4 1 dz = t,, (Y, (z), 9) 0) 

where 
4 (Y” (9)) = 0 for I = 0, Cp, (Y, (1)) = 0 for 2 - I (2) 

y?l (4 = (n WY, Yn (4). t = (h, . . . . I”) 

4 0-n (9)) = ((h (Y, (W,..., q$l (Y, (0))) 

*a (Y” (i)) I= (*I (Yn (i)),..., 9‘ 0, (i)), P + 8 - n (3) 

Here q. is a parameter, and the type of solution depends on the numerical value of 
this parameter. 

Let us replace some of the conditions given in (3) by conditions formulated in an inte- 

and let us introduce the following aux- 

Considering now the problem in an 
( n + I )-dimensional space, we arrive 
at the problem which was formulated 

Fig. 1 
Solition of the problem (l)-(3) is 

obtained as follows. Keeping q = 90 


